1   /* Copyright 2002-2016 CS Systèmes d'Information
2    * Licensed to CS Systèmes d'Information (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.propagation.semianalytical.dsst.forces;
18  
19  import java.io.NotSerializableException;
20  import java.io.Serializable;
21  import java.util.ArrayList;
22  import java.util.HashMap;
23  import java.util.List;
24  import java.util.Map;
25  import java.util.Set;
26  import java.util.SortedSet;
27  
28  import org.hipparchus.analysis.UnivariateVectorFunction;
29  import org.hipparchus.geometry.euclidean.threed.Vector3D;
30  import org.hipparchus.util.FastMath;
31  import org.orekit.attitudes.Attitude;
32  import org.orekit.attitudes.AttitudeProvider;
33  import org.orekit.errors.OrekitException;
34  import org.orekit.errors.OrekitExceptionWrapper;
35  import org.orekit.forces.ForceModel;
36  import org.orekit.frames.Frame;
37  import org.orekit.orbits.EquinoctialOrbit;
38  import org.orekit.orbits.Orbit;
39  import org.orekit.orbits.PositionAngle;
40  import org.orekit.propagation.SpacecraftState;
41  import org.orekit.propagation.numerical.TimeDerivativesEquations;
42  import org.orekit.propagation.semianalytical.dsst.utilities.AuxiliaryElements;
43  import org.orekit.propagation.semianalytical.dsst.utilities.CjSjCoefficient;
44  import org.orekit.propagation.semianalytical.dsst.utilities.ShortPeriodicsInterpolatedCoefficient;
45  import org.orekit.time.AbsoluteDate;
46  import org.orekit.utils.TimeSpanMap;
47  
48  /** Common handling of {@link DSSTForceModel} methods for Gaussian contributions to DSST propagation.
49   * <p>
50   * This abstract class allows to provide easily a subset of {@link DSSTForceModel} methods
51   * for specific Gaussian contributions.
52   * </p><p>
53   * This class implements the notion of numerical averaging of the DSST theory.
54   * Numerical averaging is mainly used for non-conservative disturbing forces such as
55   * atmospheric drag and solar radiation pressure.
56   * </p><p>
57   * Gaussian contributions can be expressed as: da<sub>i</sub>/dt = δa<sub>i</sub>/δv . q<br>
58   * where:
59   * <ul>
60   * <li>a<sub>i</sub> are the six equinoctial elements</li>
61   * <li>v is the velocity vector</li>
62   * <li>q is the perturbing acceleration due to the considered force</li>
63   * </ul>
64   *
65   * <p> The averaging process and other considerations lead to integrate this contribution
66   * over the true longitude L possibly taking into account some limits.
67   *
68   * <p> To create a numerically averaged contribution, one needs only to provide a
69   * {@link ForceModel} and to implement in the derived class the method:
70   * {@link #getLLimits(SpacecraftState)}.
71   * </p>
72   * @author Pascal Parraud
73   */
74  public abstract class AbstractGaussianContribution implements DSSTForceModel {
75  
76      /** Available orders for Gauss quadrature. */
77      private static final int[] GAUSS_ORDER = {12, 16, 20, 24, 32, 40, 48};
78  
79      /** Max rank in Gauss quadrature orders array. */
80      private static final int MAX_ORDER_RANK = GAUSS_ORDER.length - 1;
81  
82      /** Number of points for interpolation. */
83      private static final int INTERPOLATION_POINTS = 3;
84  
85      /** Maximum value for j index. */
86      private static final int JMAX = 12;
87  
88      /** Retrograde factor I.
89       *  <p>
90       *  DSST model needs equinoctial orbit as internal representation.
91       *  Classical equinoctial elements have discontinuities when inclination
92       *  is close to zero. In this representation, I = +1. <br>
93       *  To avoid this discontinuity, another representation exists and equinoctial
94       *  elements can be expressed in a different way, called "retrograde" orbit.
95       *  This implies I = -1. <br>
96       *  As Orekit doesn't implement the retrograde orbit, I is always set to +1.
97       *  But for the sake of consistency with the theory, the retrograde factor
98       *  has been kept in the formulas.
99       *  </p>
100      */
101     private static final int I = 1;
102 
103     // CHECKSTYLE: stop VisibilityModifierCheck
104 
105     /** a. */
106     protected double a;
107     /** e<sub>x</sub>. */
108     protected double k;
109     /** e<sub>y</sub>. */
110     protected double h;
111     /** h<sub>x</sub>. */
112     protected double q;
113     /** h<sub>y</sub>. */
114     protected double p;
115 
116     /** Eccentricity. */
117     protected double ecc;
118 
119     /** Kepler mean motion: n = sqrt(μ / a³). */
120     protected double n;
121 
122     /** Mean longitude. */
123     protected double lm;
124 
125     /** Equinoctial frame f vector. */
126     protected Vector3D f;
127     /** Equinoctial frame g vector. */
128     protected Vector3D g;
129     /** Equinoctial frame w vector. */
130     protected Vector3D w;
131 
132     /** A = sqrt(μ * a). */
133     protected double A;
134     /** B = sqrt(1 - h² - k²). */
135     protected double B;
136     /** C = 1 + p² + q². */
137     protected double C;
138 
139     /** 2 / (n² * a) . */
140     protected double ton2a;
141     /** 1 / A .*/
142     protected double ooA;
143     /** 1 / (A * B) .*/
144     protected double ooAB;
145     /** C / (2 * A * B) .*/
146     protected double co2AB;
147     /** 1 / (1 + B) .*/
148     protected double ooBpo;
149     /** 1 / μ .*/
150     protected double ooMu;
151     /** μ .*/
152     protected double mu;
153 
154     // CHECKSTYLE: resume VisibilityModifierCheck
155 
156     /** Contribution to be numerically averaged. */
157     private final ForceModel contribution;
158 
159     /** Gauss integrator. */
160     private final double threshold;
161 
162     /** Gauss integrator. */
163     private GaussQuadrature integrator;
164 
165     /** Flag for Gauss order computation. */
166     private boolean isDirty;
167 
168     /** Attitude provider. */
169     private AttitudeProvider attitudeProvider;
170 
171     /** Prefix for coefficients keys. */
172     private final String coefficientsKeyPrefix;
173 
174     /** Short period terms. */
175     private GaussianShortPeriodicCoefficients gaussianSPCoefs;
176 
177     /** Build a new instance.
178      *  @param coefficientsKeyPrefix prefix for coefficients keys
179      *  @param threshold tolerance for the choice of the Gauss quadrature order
180      *  @param contribution the {@link ForceModel} to be numerically averaged
181      */
182     protected AbstractGaussianContribution(final String coefficientsKeyPrefix,
183                                            final double threshold,
184                                            final ForceModel contribution) {
185         this.coefficientsKeyPrefix = coefficientsKeyPrefix;
186         this.contribution          = contribution;
187         this.threshold             = threshold;
188         this.integrator            = new GaussQuadrature(GAUSS_ORDER[MAX_ORDER_RANK]);
189         this.isDirty               = true;
190     }
191 
192     /** {@inheritDoc} */
193     @Override
194     public List<ShortPeriodTerms> initialize(final AuxiliaryElements aux, final boolean meanOnly) {
195 
196         final List<ShortPeriodTerms> list = new ArrayList<ShortPeriodTerms>();
197         gaussianSPCoefs = new GaussianShortPeriodicCoefficients(coefficientsKeyPrefix,
198                                                                 JMAX, INTERPOLATION_POINTS,
199                                                                 new TimeSpanMap<Slot>(new Slot(JMAX, INTERPOLATION_POINTS)));
200         list.add(gaussianSPCoefs);
201         return list;
202 
203     }
204 
205     /** {@inheritDoc} */
206     @Override
207     public void initializeStep(final AuxiliaryElements aux)
208         throws OrekitException {
209 
210         // Equinoctial elements
211         a  = aux.getSma();
212         k  = aux.getK();
213         h  = aux.getH();
214         q  = aux.getQ();
215         p  = aux.getP();
216 
217         // Eccentricity
218         ecc = aux.getEcc();
219 
220         // Equinoctial coefficients
221         A = aux.getA();
222         B = aux.getB();
223         C = aux.getC();
224 
225         // Equinoctial frame vectors
226         f = aux.getVectorF();
227         g = aux.getVectorG();
228         w = aux.getVectorW();
229 
230         // Kepler mean motion
231         n = aux.getMeanMotion();
232 
233         // Mean longitude
234         lm = aux.getLM();
235 
236         // 1 / A
237         ooA = 1. / A;
238         // 1 / AB
239         ooAB = ooA / B;
240         // C / 2AB
241         co2AB = C * ooAB / 2.;
242         // 1 / (1 + B)
243         ooBpo = 1. / (1. + B);
244         // 2 / (n² * a)
245         ton2a = 2. / (n * n * a);
246         // mu
247         mu = aux.getMu();
248         // 1 / mu
249         ooMu  = 1. / mu;
250     }
251 
252     /** {@inheritDoc} */
253     @Override
254     public double[] getMeanElementRate(final SpacecraftState state) throws OrekitException {
255 
256         double[] meanElementRate = new double[6];
257         // Computes the limits for the integral
258         final double[] ll = getLLimits(state);
259         // Computes integrated mean element rates if Llow < Lhigh
260         if (ll[0] < ll[1]) {
261             meanElementRate = getMeanElementRate(state, integrator, ll[0], ll[1]);
262             if (isDirty) {
263                 boolean next = true;
264                 for (int i = 0; i < MAX_ORDER_RANK && next; i++) {
265                     final double[] meanRates = getMeanElementRate(state, new GaussQuadrature(GAUSS_ORDER[i]), ll[0], ll[1]);
266                     if (getRatesDiff(meanElementRate, meanRates) < threshold) {
267                         integrator = new GaussQuadrature(GAUSS_ORDER[i]);
268                         next = false;
269                     }
270                 }
271                 isDirty = false;
272             }
273         }
274         return meanElementRate;
275     }
276 
277     /** Compute the acceleration due to the non conservative perturbing force.
278      *
279      *  @param state current state information: date, kinematics, attitude
280      *  @return the perturbing acceleration
281      *  @exception OrekitException if some specific error occurs
282      */
283     protected Vector3D getAcceleration(final SpacecraftState state)
284         throws OrekitException {
285         final AccelerationRetriever retriever = new AccelerationRetriever(state);
286         contribution.addContribution(state, retriever);
287 
288         return retriever.getAcceleration();
289     }
290 
291     /** Compute the limits in L, the true longitude, for integration.
292      *
293      *  @param  state current state information: date, kinematics, attitude
294      *  @return the integration limits in L
295      *  @exception OrekitException if some specific error occurs
296      */
297     protected abstract double[] getLLimits(final SpacecraftState state) throws OrekitException;
298 
299     /** Computes the mean equinoctial elements rates da<sub>i</sub> / dt.
300      *
301      *  @param state current state
302      *  @param gauss Gauss quadrature
303      *  @param low lower bound of the integral interval
304      *  @param high upper bound of the integral interval
305      *  @return the mean element rates
306      *  @throws OrekitException if some specific error occurs
307      */
308     private double[] getMeanElementRate(final SpacecraftState state,
309             final GaussQuadrature gauss,
310             final double low,
311             final double high) throws OrekitException {
312         final double[] meanElementRate = gauss.integrate(new IntegrableFunction(state, true, 0), low, high);
313         // Constant multiplier for integral
314         final double coef = 1. / (2. * FastMath.PI * B);
315         // Corrects mean element rates
316         for (int i = 0; i < 6; i++) {
317             meanElementRate[i] *= coef;
318         }
319         return meanElementRate;
320     }
321 
322     /** Estimates the weighted magnitude of the difference between 2 sets of equinoctial elements rates.
323      *
324      *  @param meanRef reference rates
325      *  @param meanCur current rates
326      *  @return estimated magnitude of weighted differences
327      */
328     private double getRatesDiff(final double[] meanRef, final double[] meanCur) {
329         double maxDiff = FastMath.abs(meanRef[0] - meanCur[0]) / a;
330         // Corrects mean element rates
331         for (int i = 1; i < meanRef.length; i++) {
332             final double diff = FastMath.abs(meanRef[i] - meanCur[i]);
333             if (maxDiff < diff) maxDiff = diff;
334         }
335         return maxDiff;
336     }
337 
338     /** {@inheritDoc} */
339     @Override
340     public void registerAttitudeProvider(final AttitudeProvider provider) {
341         this.attitudeProvider = provider;
342     }
343 
344     /** {@inheritDoc} */
345     @Override
346     public void updateShortPeriodTerms(final SpacecraftState ... meanStates)
347         throws OrekitException {
348 
349         final Slot slot = gaussianSPCoefs.createSlot(meanStates);
350         for (final SpacecraftState meanState : meanStates) {
351             initializeStep(new AuxiliaryElements(meanState.getOrbit(), I));
352             final double[][] currentRhoSigmaj = computeRhoSigmaCoefficients(meanState.getDate());
353             final FourierCjSjCoefficients fourierCjSj = new FourierCjSjCoefficients(meanState, JMAX);
354             final UijVijCoefficients uijvij = new UijVijCoefficients(currentRhoSigmaj, fourierCjSj, JMAX);
355             gaussianSPCoefs.computeCoefficients(meanState, slot, fourierCjSj, uijvij, n, a);
356         }
357 
358     }
359 
360     /**
361      * Compute the auxiliary quantities ρ<sub>j</sub> and σ<sub>j</sub>.
362      * <p>
363      * The expressions used are equations 2.5.3-(4) from the Danielson paper. <br/>
364      *  ρ<sub>j</sub> = (1+jB)(-b)<sup>j</sup>C<sub>j</sub>(k, h) <br/>
365      *  σ<sub>j</sub> = (1+jB)(-b)<sup>j</sup>S<sub>j</sub>(k, h) <br/>
366      * </p>
367      * @param date current date
368      * @return computed coefficients
369      */
370     private double[][] computeRhoSigmaCoefficients(final AbsoluteDate date) {
371         final double[][] currentRhoSigmaj = new double[2][3 * JMAX + 1];
372         final CjSjCoefficient cjsjKH = new CjSjCoefficient(k, h);
373         final double b = 1. / (1 + B);
374 
375         // (-b)<sup>j</sup>
376         double mbtj = 1;
377 
378         for (int j = 1; j <= 3 * JMAX; j++) {
379 
380             //Compute current rho and sigma;
381             mbtj *= -b;
382             final double coef = (1 + j * B) * mbtj;
383             currentRhoSigmaj[0][j] = coef * cjsjKH.getCj(j);
384             currentRhoSigmaj[1][j] = coef * cjsjKH.getSj(j);
385         }
386         return currentRhoSigmaj;
387     }
388 
389     /** Internal class for retrieving acceleration from a {@link ForceModel}. */
390     private static class AccelerationRetriever implements TimeDerivativesEquations {
391 
392         /** acceleration vector. */
393         private Vector3D acceleration;
394 
395         /** state. */
396         private final SpacecraftState state;
397 
398         /** Simple constructor.
399          *  @param state input state
400          */
401         AccelerationRetriever(final SpacecraftState state) {
402             this.acceleration = Vector3D.ZERO;
403             this.state = state;
404         }
405 
406         /** {@inheritDoc} */
407         @Override
408         public void addKeplerContribution(final double mu) {
409         }
410 
411         /** {@inheritDoc} */
412         @Override
413         public void addXYZAcceleration(final double x, final double y, final double z) {
414             acceleration = new Vector3D(x, y, z);
415         }
416 
417         /** {@inheritDoc} */
418         @Override
419         public void addAcceleration(final Vector3D gamma, final Frame frame)
420             throws OrekitException {
421             acceleration = frame.getTransformTo(state.getFrame(),
422                                                 state.getDate()).transformVector(gamma);
423         }
424 
425         /** {@inheritDoc} */
426         @Override
427         public void addMassDerivative(final double q) {
428         }
429 
430         /** Get the acceleration vector.
431          * @return acceleration vector
432          */
433         public Vector3D getAcceleration() {
434             return acceleration;
435         }
436 
437     }
438 
439     /** Internal class for numerical quadrature. */
440     private class IntegrableFunction implements UnivariateVectorFunction {
441 
442         /** Current state. */
443         private final SpacecraftState state;
444 
445         /** Signal that this class is used to compute the values required by the mean element variations
446          * or by the short periodic element variations. */
447         private final boolean meanMode;
448 
449         /** The j index.
450          * <p>
451          * Used only for short periodic variation. Ignored for mean elements variation.
452          * </p> */
453         private final int j;
454 
455         /** Build a new instance.
456          *  @param  state current state information: date, kinematics, attitude
457          *  @param meanMode if true return the value associated to the mean elements variation,
458          *                  if false return the values associated to the short periodic elements variation
459          * @param j the j index. used only for short periodic variation. Ignored for mean elements variation.
460          */
461         IntegrableFunction(final SpacecraftState state, final boolean meanMode, final int j) {
462             this.state = state;
463             this.meanMode = meanMode;
464             this.j = j;
465         }
466 
467         /** {@inheritDoc} */
468         @Override
469         public double[] value(final double x) {
470 
471             //Compute the time difference from the true longitude difference
472             final double shiftedLm = trueToMean(x);
473             final double dLm = shiftedLm - lm;
474             final double dt = dLm / n;
475 
476             final double cosL = FastMath.cos(x);
477             final double sinL = FastMath.sin(x);
478             final double roa  = B * B / (1. + h * sinL + k * cosL);
479             final double roa2 = roa * roa;
480             final double r    = a * roa;
481             final double X    = r * cosL;
482             final double Y    = r * sinL;
483             final double naob = n * a / B;
484             final double Xdot = -naob * (h + sinL);
485             final double Ydot =  naob * (k + cosL);
486             final Vector3D vel = new Vector3D(Xdot, f, Ydot, g);
487 
488             // Compute acceleration
489             Vector3D acc = Vector3D.ZERO;
490             try {
491 
492                 // shift the orbit to dt
493                 final Orbit shiftedOrbit = state.getOrbit().shiftedBy(dt);
494 
495                 // Recompose an orbit with time held fixed to be compliant with DSST theory
496                 final Orbit recomposedOrbit =
497                         new EquinoctialOrbit(shiftedOrbit.getA(),
498                                              shiftedOrbit.getEquinoctialEx(),
499                                              shiftedOrbit.getEquinoctialEy(),
500                                              shiftedOrbit.getHx(),
501                                              shiftedOrbit.getHy(),
502                                              shiftedOrbit.getLv(),
503                                              PositionAngle.TRUE,
504                                              shiftedOrbit.getFrame(),
505                                              state.getDate(),
506                                              shiftedOrbit.getMu());
507 
508                 // Get the corresponding attitude
509                 final Attitude recomposedAttitude =
510                         attitudeProvider.getAttitude(recomposedOrbit,
511                                                      recomposedOrbit.getDate(),
512                                                      recomposedOrbit.getFrame());
513 
514                 // create shifted SpacecraftState with attitude at specified time
515                 final SpacecraftState shiftedState =
516                         new SpacecraftState(recomposedOrbit, recomposedAttitude, state.getMass());
517 
518                 acc = getAcceleration(shiftedState);
519 
520             } catch (OrekitException oe) {
521                 throw new OrekitExceptionWrapper(oe);
522             }
523             //Compute the derivatives of the elements by the speed
524             final double[] deriv = new double[6];
525             // da/dv
526             deriv[0] = getAoV(vel).dotProduct(acc);
527             // dex/dv
528             deriv[1] = getKoV(X, Y, Xdot, Ydot).dotProduct(acc);
529             // dey/dv
530             deriv[2] = getHoV(X, Y, Xdot, Ydot).dotProduct(acc);
531             // dhx/dv
532             deriv[3] = getQoV(X).dotProduct(acc);
533             // dhy/dv
534             deriv[4] = getPoV(Y).dotProduct(acc);
535             // dλ/dv
536             deriv[5] = getLoV(X, Y, Xdot, Ydot).dotProduct(acc);
537 
538             // Compute mean elements rates
539             double[] val = null;
540             if (meanMode) {
541                 val = new double[6];
542                 for (int i = 0; i < 6; i++) {
543                     // da<sub>i</sub>/dt
544                     val[i] = roa2 * deriv[i];
545                 }
546             } else {
547                 val = new double[12];
548                 //Compute cos(j*L) and sin(j*L);
549                 final double cosjL = j == 1 ? cosL : FastMath.cos(j * x);
550                 final double sinjL = j == 1 ? sinL : FastMath.sin(j * x);
551 
552                 for (int i = 0; i < 6; i++) {
553                     // da<sub>i</sub>/dv * cos(jL)
554                     val[i] = cosjL * deriv[i];
555                     // da<sub>i</sub>/dv * sin(jL)
556                     val[i + 6] = sinjL * deriv[i];
557                 }
558             }
559             return val;
560         }
561 
562         /** Converts true longitude to eccentric longitude.
563          * @param lv True longitude
564          * @return Eccentric longitude
565          */
566         private double trueToEccentric (final double lv) {
567             final double cosLv   = FastMath.cos(lv);
568             final double sinLv   = FastMath.sin(lv);
569             final double num     = h * cosLv - k * sinLv;
570             final double den     = B + 1 + k * cosLv + h * sinLv;
571             return lv + 2 * FastMath.atan(num / den);
572         }
573 
574         /** Converts eccentric longitude to mean longitude.
575          * @param le Eccentric longitude
576          * @return Mean longitude
577          */
578         private double eccentricToMean (final double le) {
579             return le - k * FastMath.sin(le) + h * FastMath.cos(le);
580         }
581 
582         /** Converts true longitude to mean longitude.
583          * @param lv True longitude
584          * @return Eccentric longitude
585          */
586         private double trueToMean (final double lv) {
587             return eccentricToMean(trueToEccentric(lv));
588         }
589 
590         /** Compute δa/δv.
591          *  @param vel satellite velocity
592          *  @return δa/δv
593          */
594         private Vector3D getAoV(final Vector3D vel) {
595             return new Vector3D(ton2a, vel);
596         }
597 
598         /** Compute δh/δv.
599          *  @param X satellite position component along f, equinoctial reference frame 1st vector
600          *  @param Y satellite position component along g, equinoctial reference frame 2nd vector
601          *  @param Xdot satellite velocity component along f, equinoctial reference frame 1st vector
602          *  @param Ydot satellite velocity component along g, equinoctial reference frame 2nd vector
603          *  @return δh/δv
604          */
605         private Vector3D getHoV(final double X, final double Y, final double Xdot, final double Ydot) {
606             final double kf = (2. * Xdot * Y - X * Ydot) * ooMu;
607             final double kg = X * Xdot * ooMu;
608             final double kw = k * (I * q * Y - p * X) * ooAB;
609             return new Vector3D(kf, f, -kg, g, kw, w);
610         }
611 
612         /** Compute δk/δv.
613          *  @param X satellite position component along f, equinoctial reference frame 1st vector
614          *  @param Y satellite position component along g, equinoctial reference frame 2nd vector
615          *  @param Xdot satellite velocity component along f, equinoctial reference frame 1st vector
616          *  @param Ydot satellite velocity component along g, equinoctial reference frame 2nd vector
617          *  @return δk/δv
618          */
619         private Vector3D getKoV(final double X, final double Y, final double Xdot, final double Ydot) {
620             final double kf = Y * Ydot * ooMu;
621             final double kg = (2. * X * Ydot - Xdot * Y) * ooMu;
622             final double kw = h * (I * q * Y - p * X) * ooAB;
623             return new Vector3D(-kf, f, kg, g, -kw, w);
624         }
625 
626         /** Compute δp/δv.
627          *  @param Y satellite position component along g, equinoctial reference frame 2nd vector
628          *  @return δp/δv
629          */
630         private Vector3D getPoV(final double Y) {
631             return new Vector3D(co2AB * Y, w);
632         }
633 
634         /** Compute δq/δv.
635          *  @param X satellite position component along f, equinoctial reference frame 1st vector
636          *  @return δq/δv
637          */
638         private Vector3D getQoV(final double X) {
639             return new Vector3D(I * co2AB * X, w);
640         }
641 
642         /** Compute δλ/δv.
643          *  @param X satellite position component along f, equinoctial reference frame 1st vector
644          *  @param Y satellite position component along g, equinoctial reference frame 2nd vector
645          *  @param Xdot satellite velocity component along f, equinoctial reference frame 1st vector
646          *  @param Ydot satellite velocity component along g, equinoctial reference frame 2nd vector
647          *  @return δλ/δv
648          */
649         private Vector3D getLoV(final double X, final double Y, final double Xdot, final double Ydot) {
650             final Vector3D pos = new Vector3D(X, f, Y, g);
651             final Vector3D v2  = new Vector3D(k, getHoV(X, Y, Xdot, Ydot), -h, getKoV(X, Y, Xdot, Ydot));
652             return new Vector3D(-2. * ooA, pos, ooBpo, v2, (I * q * Y - p * X) * ooA, w);
653         }
654 
655     }
656 
657     /** Class used to {@link #integrate(UnivariateVectorFunction, double, double) integrate}
658      *  a {@link org.hipparchus.analysis.UnivariateVectorFunction function}
659      *  of the orbital elements using the Gaussian quadrature rule to get the acceleration.
660      */
661     private static class GaussQuadrature {
662 
663         // CHECKSTYLE: stop NoWhitespaceAfter
664 
665         // Points and weights for the available quadrature orders
666 
667         /** Points for quadrature of order 12. */
668         private static final double[] P_12 = {
669             -0.98156063424671910000,
670             -0.90411725637047490000,
671             -0.76990267419430470000,
672             -0.58731795428661740000,
673             -0.36783149899818024000,
674             -0.12523340851146890000,
675             0.12523340851146890000,
676             0.36783149899818024000,
677             0.58731795428661740000,
678             0.76990267419430470000,
679             0.90411725637047490000,
680             0.98156063424671910000
681         };
682 
683         /** Weights for quadrature of order 12. */
684         private static final double[] W_12 = {
685             0.04717533638651220000,
686             0.10693932599531830000,
687             0.16007832854334633000,
688             0.20316742672306584000,
689             0.23349253653835478000,
690             0.24914704581340286000,
691             0.24914704581340286000,
692             0.23349253653835478000,
693             0.20316742672306584000,
694             0.16007832854334633000,
695             0.10693932599531830000,
696             0.04717533638651220000
697         };
698 
699         /** Points for quadrature of order 16. */
700         private static final double[] P_16 = {
701             -0.98940093499164990000,
702             -0.94457502307323260000,
703             -0.86563120238783160000,
704             -0.75540440835500310000,
705             -0.61787624440264380000,
706             -0.45801677765722737000,
707             -0.28160355077925890000,
708             -0.09501250983763745000,
709             0.09501250983763745000,
710             0.28160355077925890000,
711             0.45801677765722737000,
712             0.61787624440264380000,
713             0.75540440835500310000,
714             0.86563120238783160000,
715             0.94457502307323260000,
716             0.98940093499164990000
717         };
718 
719         /** Weights for quadrature of order 16. */
720         private static final double[] W_16 = {
721             0.02715245941175405800,
722             0.06225352393864777000,
723             0.09515851168249283000,
724             0.12462897125553388000,
725             0.14959598881657685000,
726             0.16915651939500256000,
727             0.18260341504492360000,
728             0.18945061045506847000,
729             0.18945061045506847000,
730             0.18260341504492360000,
731             0.16915651939500256000,
732             0.14959598881657685000,
733             0.12462897125553388000,
734             0.09515851168249283000,
735             0.06225352393864777000,
736             0.02715245941175405800
737         };
738 
739         /** Points for quadrature of order 20. */
740         private static final double[] P_20 = {
741             -0.99312859918509490000,
742             -0.96397192727791390000,
743             -0.91223442825132600000,
744             -0.83911697182221890000,
745             -0.74633190646015080000,
746             -0.63605368072651510000,
747             -0.51086700195082700000,
748             -0.37370608871541955000,
749             -0.22778585114164507000,
750             -0.07652652113349734000,
751             0.07652652113349734000,
752             0.22778585114164507000,
753             0.37370608871541955000,
754             0.51086700195082700000,
755             0.63605368072651510000,
756             0.74633190646015080000,
757             0.83911697182221890000,
758             0.91223442825132600000,
759             0.96397192727791390000,
760             0.99312859918509490000
761         };
762 
763         /** Weights for quadrature of order 20. */
764         private static final double[] W_20 = {
765             0.01761400713915226400,
766             0.04060142980038684000,
767             0.06267204833410904000,
768             0.08327674157670477000,
769             0.10193011981724048000,
770             0.11819453196151844000,
771             0.13168863844917678000,
772             0.14209610931838212000,
773             0.14917298647260380000,
774             0.15275338713072600000,
775             0.15275338713072600000,
776             0.14917298647260380000,
777             0.14209610931838212000,
778             0.13168863844917678000,
779             0.11819453196151844000,
780             0.10193011981724048000,
781             0.08327674157670477000,
782             0.06267204833410904000,
783             0.04060142980038684000,
784             0.01761400713915226400
785         };
786 
787         /** Points for quadrature of order 24. */
788         private static final double[] P_24 = {
789             -0.99518721999702130000,
790             -0.97472855597130950000,
791             -0.93827455200273270000,
792             -0.88641552700440100000,
793             -0.82000198597390300000,
794             -0.74012419157855440000,
795             -0.64809365193697550000,
796             -0.54542147138883950000,
797             -0.43379350762604520000,
798             -0.31504267969616340000,
799             -0.19111886747361634000,
800             -0.06405689286260563000,
801             0.06405689286260563000,
802             0.19111886747361634000,
803             0.31504267969616340000,
804             0.43379350762604520000,
805             0.54542147138883950000,
806             0.64809365193697550000,
807             0.74012419157855440000,
808             0.82000198597390300000,
809             0.88641552700440100000,
810             0.93827455200273270000,
811             0.97472855597130950000,
812             0.99518721999702130000
813         };
814 
815         /** Weights for quadrature of order 24. */
816         private static final double[] W_24 = {
817             0.01234122979998733500,
818             0.02853138862893380600,
819             0.04427743881741981000,
820             0.05929858491543691500,
821             0.07334648141108027000,
822             0.08619016153195320000,
823             0.09761865210411391000,
824             0.10744427011596558000,
825             0.11550566805372553000,
826             0.12167047292780335000,
827             0.12583745634682825000,
828             0.12793819534675221000,
829             0.12793819534675221000,
830             0.12583745634682825000,
831             0.12167047292780335000,
832             0.11550566805372553000,
833             0.10744427011596558000,
834             0.09761865210411391000,
835             0.08619016153195320000,
836             0.07334648141108027000,
837             0.05929858491543691500,
838             0.04427743881741981000,
839             0.02853138862893380600,
840             0.01234122979998733500
841         };
842 
843         /** Points for quadrature of order 32. */
844         private static final double[] P_32 = {
845             -0.99726386184948160000,
846             -0.98561151154526840000,
847             -0.96476225558750640000,
848             -0.93490607593773970000,
849             -0.89632115576605220000,
850             -0.84936761373256990000,
851             -0.79448379596794250000,
852             -0.73218211874028970000,
853             -0.66304426693021520000,
854             -0.58771575724076230000,
855             -0.50689990893222950000,
856             -0.42135127613063540000,
857             -0.33186860228212767000,
858             -0.23928736225213710000,
859             -0.14447196158279646000,
860             -0.04830766568773831000,
861             0.04830766568773831000,
862             0.14447196158279646000,
863             0.23928736225213710000,
864             0.33186860228212767000,
865             0.42135127613063540000,
866             0.50689990893222950000,
867             0.58771575724076230000,
868             0.66304426693021520000,
869             0.73218211874028970000,
870             0.79448379596794250000,
871             0.84936761373256990000,
872             0.89632115576605220000,
873             0.93490607593773970000,
874             0.96476225558750640000,
875             0.98561151154526840000,
876             0.99726386184948160000
877         };
878 
879         /** Weights for quadrature of order 32. */
880         private static final double[] W_32 = {
881             0.00701861000947013600,
882             0.01627439473090571200,
883             0.02539206530926214200,
884             0.03427386291302141000,
885             0.04283589802222658600,
886             0.05099805926237621600,
887             0.05868409347853559000,
888             0.06582222277636193000,
889             0.07234579410884862000,
890             0.07819389578707042000,
891             0.08331192422694673000,
892             0.08765209300440380000,
893             0.09117387869576390000,
894             0.09384439908080441000,
895             0.09563872007927487000,
896             0.09654008851472784000,
897             0.09654008851472784000,
898             0.09563872007927487000,
899             0.09384439908080441000,
900             0.09117387869576390000,
901             0.08765209300440380000,
902             0.08331192422694673000,
903             0.07819389578707042000,
904             0.07234579410884862000,
905             0.06582222277636193000,
906             0.05868409347853559000,
907             0.05099805926237621600,
908             0.04283589802222658600,
909             0.03427386291302141000,
910             0.02539206530926214200,
911             0.01627439473090571200,
912             0.00701861000947013600
913         };
914 
915         /** Points for quadrature of order 40. */
916         private static final double[] P_40 = {
917             -0.99823770971055930000,
918             -0.99072623869945710000,
919             -0.97725994998377420000,
920             -0.95791681921379170000,
921             -0.93281280827867660000,
922             -0.90209880696887420000,
923             -0.86595950321225960000,
924             -0.82461223083331170000,
925             -0.77830565142651940000,
926             -0.72731825518992710000,
927             -0.67195668461417960000,
928             -0.61255388966798030000,
929             -0.54946712509512820000,
930             -0.48307580168617870000,
931             -0.41377920437160500000,
932             -0.34199409082575850000,
933             -0.26815218500725370000,
934             -0.19269758070137110000,
935             -0.11608407067525522000,
936             -0.03877241750605081600,
937             0.03877241750605081600,
938             0.11608407067525522000,
939             0.19269758070137110000,
940             0.26815218500725370000,
941             0.34199409082575850000,
942             0.41377920437160500000,
943             0.48307580168617870000,
944             0.54946712509512820000,
945             0.61255388966798030000,
946             0.67195668461417960000,
947             0.72731825518992710000,
948             0.77830565142651940000,
949             0.82461223083331170000,
950             0.86595950321225960000,
951             0.90209880696887420000,
952             0.93281280827867660000,
953             0.95791681921379170000,
954             0.97725994998377420000,
955             0.99072623869945710000,
956             0.99823770971055930000
957         };
958 
959         /** Weights for quadrature of order 40. */
960         private static final double[] W_40 = {
961             0.00452127709853309800,
962             0.01049828453115270400,
963             0.01642105838190797300,
964             0.02224584919416689000,
965             0.02793700698002338000,
966             0.03346019528254786500,
967             0.03878216797447199000,
968             0.04387090818567333000,
969             0.04869580763507221000,
970             0.05322784698393679000,
971             0.05743976909939157000,
972             0.06130624249292891000,
973             0.06480401345660108000,
974             0.06791204581523394000,
975             0.07061164739128681000,
976             0.07288658239580408000,
977             0.07472316905796833000,
978             0.07611036190062619000,
979             0.07703981816424793000,
980             0.07750594797842482000,
981             0.07750594797842482000,
982             0.07703981816424793000,
983             0.07611036190062619000,
984             0.07472316905796833000,
985             0.07288658239580408000,
986             0.07061164739128681000,
987             0.06791204581523394000,
988             0.06480401345660108000,
989             0.06130624249292891000,
990             0.05743976909939157000,
991             0.05322784698393679000,
992             0.04869580763507221000,
993             0.04387090818567333000,
994             0.03878216797447199000,
995             0.03346019528254786500,
996             0.02793700698002338000,
997             0.02224584919416689000,
998             0.01642105838190797300,
999             0.01049828453115270400,
1000             0.00452127709853309800
1001         };
1002 
1003         /** Points for quadrature of order 48. */
1004         private static final double[] P_48 = {
1005             -0.99877100725242610000,
1006             -0.99353017226635080000,
1007             -0.98412458372282700000,
1008             -0.97059159254624720000,
1009             -0.95298770316043080000,
1010             -0.93138669070655440000,
1011             -0.90587913671556960000,
1012             -0.87657202027424800000,
1013             -0.84358826162439350000,
1014             -0.80706620402944250000,
1015             -0.76715903251574020000,
1016             -0.72403413092381470000,
1017             -0.67787237963266400000,
1018             -0.62886739677651370000,
1019             -0.57722472608397270000,
1020             -0.52316097472223300000,
1021             -0.46690290475095840000,
1022             -0.40868648199071680000,
1023             -0.34875588629216070000,
1024             -0.28736248735545555000,
1025             -0.22476379039468908000,
1026             -0.16122235606889174000,
1027             -0.09700469920946270000,
1028             -0.03238017096286937000,
1029             0.03238017096286937000,
1030             0.09700469920946270000,
1031             0.16122235606889174000,
1032             0.22476379039468908000,
1033             0.28736248735545555000,
1034             0.34875588629216070000,
1035             0.40868648199071680000,
1036             0.46690290475095840000,
1037             0.52316097472223300000,
1038             0.57722472608397270000,
1039             0.62886739677651370000,
1040             0.67787237963266400000,
1041             0.72403413092381470000,
1042             0.76715903251574020000,
1043             0.80706620402944250000,
1044             0.84358826162439350000,
1045             0.87657202027424800000,
1046             0.90587913671556960000,
1047             0.93138669070655440000,
1048             0.95298770316043080000,
1049             0.97059159254624720000,
1050             0.98412458372282700000,
1051             0.99353017226635080000,
1052             0.99877100725242610000
1053         };
1054 
1055         /** Weights for quadrature of order 48. */
1056         private static final double[] W_48 = {
1057             0.00315334605230596250,
1058             0.00732755390127620800,
1059             0.01147723457923446900,
1060             0.01557931572294386600,
1061             0.01961616045735556700,
1062             0.02357076083932435600,
1063             0.02742650970835688000,
1064             0.03116722783279807000,
1065             0.03477722256477045000,
1066             0.03824135106583080600,
1067             0.04154508294346483000,
1068             0.04467456085669424000,
1069             0.04761665849249054000,
1070             0.05035903555385448000,
1071             0.05289018948519365000,
1072             0.05519950369998416500,
1073             0.05727729210040315000,
1074             0.05911483969839566000,
1075             0.06070443916589384000,
1076             0.06203942315989268000,
1077             0.06311419228625403000,
1078             0.06392423858464817000,
1079             0.06446616443595010000,
1080             0.06473769681268386000,
1081             0.06473769681268386000,
1082             0.06446616443595010000,
1083             0.06392423858464817000,
1084             0.06311419228625403000,
1085             0.06203942315989268000,
1086             0.06070443916589384000,
1087             0.05911483969839566000,
1088             0.05727729210040315000,
1089             0.05519950369998416500,
1090             0.05289018948519365000,
1091             0.05035903555385448000,
1092             0.04761665849249054000,
1093             0.04467456085669424000,
1094             0.04154508294346483000,
1095             0.03824135106583080600,
1096             0.03477722256477045000,
1097             0.03116722783279807000,
1098             0.02742650970835688000,
1099             0.02357076083932435600,
1100             0.01961616045735556700,
1101             0.01557931572294386600,
1102             0.01147723457923446900,
1103             0.00732755390127620800,
1104             0.00315334605230596250
1105         };
1106         // CHECKSTYLE: resume NoWhitespaceAfter
1107 
1108         /** Node points. */
1109         private final double[] nodePoints;
1110 
1111         /** Node weights. */
1112         private final double[] nodeWeights;
1113 
1114         /** Creates a Gauss integrator of the given order.
1115          *
1116          *  @param numberOfPoints Order of the integration rule.
1117          */
1118         GaussQuadrature(final int numberOfPoints) {
1119 
1120             switch(numberOfPoints) {
1121                 case 12 :
1122                     this.nodePoints  = P_12.clone();
1123                     this.nodeWeights = W_12.clone();
1124                     break;
1125                 case 16 :
1126                     this.nodePoints  = P_16.clone();
1127                     this.nodeWeights = W_16.clone();
1128                     break;
1129                 case 20 :
1130                     this.nodePoints  = P_20.clone();
1131                     this.nodeWeights = W_20.clone();
1132                     break;
1133                 case 24 :
1134                     this.nodePoints  = P_24.clone();
1135                     this.nodeWeights = W_24.clone();
1136                     break;
1137                 case 32 :
1138                     this.nodePoints  = P_32.clone();
1139                     this.nodeWeights = W_32.clone();
1140                     break;
1141                 case 40 :
1142                     this.nodePoints  = P_40.clone();
1143                     this.nodeWeights = W_40.clone();
1144                     break;
1145                 case 48 :
1146                 default :
1147                     this.nodePoints  = P_48.clone();
1148                     this.nodeWeights = W_48.clone();
1149                     break;
1150             }
1151 
1152         }
1153 
1154         /** Integrates a given function on the given interval.
1155          *
1156          *  @param f Function to integrate.
1157          *  @param lowerBound Lower bound of the integration interval.
1158          *  @param upperBound Upper bound of the integration interval.
1159          *  @return the integral of the weighted function.
1160          */
1161         public double[] integrate(final UnivariateVectorFunction f,
1162                 final double lowerBound, final double upperBound) {
1163 
1164             final double[] adaptedPoints  = nodePoints.clone();
1165             final double[] adaptedWeights = nodeWeights.clone();
1166             transform(adaptedPoints, adaptedWeights, lowerBound, upperBound);
1167             return basicIntegrate(f, adaptedPoints, adaptedWeights);
1168         }
1169 
1170         /** Performs a change of variable so that the integration
1171          *  can be performed on an arbitrary interval {@code [a, b]}.
1172          *  <p>
1173          *  It is assumed that the natural interval is {@code [-1, 1]}.
1174          *  </p>
1175          *
1176          * @param points  Points to adapt to the new interval.
1177          * @param weights Weights to adapt to the new interval.
1178          * @param a Lower bound of the integration interval.
1179          * @param b Lower bound of the integration interval.
1180          */
1181         private void transform(final double[] points, final double[] weights,
1182                 final double a, final double b) {
1183             // Scaling
1184             final double scale = (b - a) / 2;
1185             final double shift = a + scale;
1186             for (int i = 0; i < points.length; i++) {
1187                 points[i]   = points[i] * scale + shift;
1188                 weights[i] *= scale;
1189             }
1190         }
1191 
1192         /** Returns an estimate of the integral of {@code f(x) * w(x)},
1193          *  where {@code w} is a weight function that depends on the actual
1194          *  flavor of the Gauss integration scheme.
1195          *
1196          * @param f Function to integrate.
1197          * @param points  Nodes.
1198          * @param weights Nodes weights.
1199          * @return the integral of the weighted function.
1200          */
1201         private double[] basicIntegrate(final UnivariateVectorFunction f,
1202                 final double[] points,
1203                 final double[] weights) {
1204             double x = points[0];
1205             double w = weights[0];
1206             double[] v = f.value(x);
1207             final double[] y = new double[v.length];
1208             for (int j = 0; j < v.length; j++) {
1209                 y[j] = w * v[j];
1210             }
1211             final double[] t = y.clone();
1212             final double[] c = new double[v.length];
1213             final double[] s = t.clone();
1214             for (int i = 1; i < points.length; i++) {
1215                 x = points[i];
1216                 w = weights[i];
1217                 v = f.value(x);
1218                 for (int j = 0; j < v.length; j++) {
1219                     y[j] = w * v[j] - c[j];
1220                     t[j] =  s[j] + y[j];
1221                     c[j] = (t[j] - s[j]) - y[j];
1222                     s[j] = t[j];
1223                 }
1224             }
1225             return s;
1226         }
1227 
1228     }
1229 
1230     /** Compute the C<sub>i</sub><sup>j</sup> and the S<sub>i</sub><sup>j</sup> coefficients.
1231      *  <p>
1232      *  Those coefficients are given in Danielson paper by expression 4.4-(6)
1233      *  </p>
1234      *  @author Petre Bazavan
1235      *  @author Lucian Barbulescu
1236      */
1237     private class FourierCjSjCoefficients {
1238 
1239         /** Maximum possible value for j. */
1240         private final int jMax;
1241 
1242         /** The C<sub>i</sub><sup>j</sup> coefficients.
1243          * <p>
1244          * the index i corresponds to the following elements: <br/>
1245          * - 0 for a <br>
1246          * - 1 for k <br>
1247          * - 2 for h <br>
1248          * - 3 for q <br>
1249          * - 4 for p <br>
1250          * - 5 for λ <br>
1251          * </p>
1252          */
1253         private final double[][] cCoef;
1254 
1255         /** The C<sub>i</sub><sup>j</sup> coefficients.
1256          * <p>
1257          * the index i corresponds to the following elements: <br/>
1258          * - 0 for a <br>
1259          * - 1 for k <br>
1260          * - 2 for h <br>
1261          * - 3 for q <br>
1262          * - 4 for p <br>
1263          * - 5 for λ <br>
1264          * </p>
1265          */
1266         private final double[][] sCoef;
1267 
1268         /** Standard constructor.
1269          * @param state the current state
1270          * @param jMax maximum value for j
1271          * @throws OrekitException in case of an error
1272          */
1273         FourierCjSjCoefficients(final SpacecraftState state, final int jMax)
1274             throws OrekitException {
1275             //Initialise the fields
1276             this.jMax = jMax;
1277 
1278             //Allocate the arrays
1279             final int rows = jMax + 1;
1280             cCoef = new double[rows][6];
1281             sCoef = new double[rows][6];
1282 
1283             //Compute the coefficients
1284             computeCoefficients(state);
1285         }
1286 
1287         /**
1288          * Compute the Fourrier coefficients.
1289          * <p>
1290          * Only the C<sub>i</sub><sup>j</sup> and S<sub>i</sub><sup>j</sup> coefficients need to be computed
1291          * as D<sub>i</sub><sup>m</sup> is always 0.
1292          * </p>
1293          * @param state the current state
1294          * @throws OrekitException in case of an error
1295          */
1296         private void computeCoefficients(final SpacecraftState state)
1297             throws OrekitException {
1298             // Computes the limits for the integral
1299             final double[] ll = getLLimits(state);
1300             // Computes integrated mean element rates if Llow < Lhigh
1301             if (ll[0] < ll[1]) {
1302                 //Compute 1 / PI
1303                 final double ooPI = 1 / FastMath.PI;
1304 
1305                 // loop through all values of j
1306                 for (int j = 0; j <= jMax; j++) {
1307                     final double[] curentCoefficients =
1308                             integrator.integrate(new IntegrableFunction(state, false, j), ll[0], ll[1]);
1309 
1310                     //divide by PI and set the values for the coefficients
1311                     for (int i = 0; i < 6; i++) {
1312                         cCoef[j][i] = ooPI * curentCoefficients[i];
1313                         sCoef[j][i] = ooPI * curentCoefficients[i + 6];
1314                     }
1315                 }
1316             }
1317         }
1318 
1319         /** Get the coefficient C<sub>i</sub><sup>j</sup>.
1320          * @param i i index - corresponds to the required variation
1321          * @param j j index
1322          * @return the coefficient C<sub>i</sub><sup>j</sup>
1323          */
1324         public double getCij(final int i, final int j) {
1325             return cCoef[j][i];
1326         }
1327 
1328         /** Get the coefficient S<sub>i</sub><sup>j</sup>.
1329          * @param i i index - corresponds to the required variation
1330          * @param j j index
1331          * @return the coefficient S<sub>i</sub><sup>j</sup>
1332          */
1333         public double getSij(final int i, final int j) {
1334             return sCoef[j][i];
1335         }
1336     }
1337 
1338     /** This class handles the short periodic coefficients described in Danielson 2.5.3-26.
1339      *
1340      * <p>
1341      * The value of M is 0. Also, since the values of the Fourier coefficient D<sub>i</sub><sup>m</sup> is 0
1342      * then the values of the coefficients D<sub>i</sub><sup>m</sup> for m &gt; 2 are also 0.
1343      * </p>
1344      * @author Petre Bazavan
1345      * @author Lucian Barbulescu
1346      *
1347      */
1348     private static class GaussianShortPeriodicCoefficients implements ShortPeriodTerms {
1349 
1350         /** Serializable UID. */
1351         private static final long serialVersionUID = 20151118L;
1352 
1353         /** Maximum value for j index. */
1354         private final int jMax;
1355 
1356         /** Number of points used in the interpolation process. */
1357         private final int interpolationPoints;
1358 
1359         /** Prefix for coefficients keys. */
1360         private final String coefficientsKeyPrefix;
1361 
1362         /** All coefficients slots. */
1363         private final transient TimeSpanMap<Slot> slots;
1364 
1365         /** Constructor.
1366          *  @param coefficientsKeyPrefix prefix for coefficients keys
1367          *  @param jMax maximum value for j index
1368          *  @param interpolationPoints number of points used in the interpolation process
1369          *  @param slots all coefficients slots
1370          */
1371         GaussianShortPeriodicCoefficients(final String coefficientsKeyPrefix,
1372                                           final int jMax, final int interpolationPoints,
1373                                           final TimeSpanMap<Slot> slots) {
1374             //Initialize fields
1375             this.jMax                  = jMax;
1376             this.interpolationPoints   = interpolationPoints;
1377             this.coefficientsKeyPrefix = coefficientsKeyPrefix;
1378             this.slots                 = slots;
1379         }
1380 
1381         /** Get the slot valid for some date.
1382          * @param meanStates mean states defining the slot
1383          * @return slot valid at the specified date
1384          */
1385         public Slot createSlot(final SpacecraftState ... meanStates) {
1386             final Slot         slot  = new Slot(jMax, interpolationPoints);
1387             final AbsoluteDate first = meanStates[0].getDate();
1388             final AbsoluteDate last  = meanStates[meanStates.length - 1].getDate();
1389             if (first.compareTo(last) <= 0) {
1390                 slots.addValidAfter(slot, first);
1391             } else {
1392                 slots.addValidBefore(slot, first);
1393             }
1394             return slot;
1395         }
1396 
1397         /** Compute the short periodic coefficients.
1398          *
1399          * @param state current state information: date, kinematics, attitude
1400          * @param slot coefficients slot
1401          * @param fourierCjSj Fourier coefficients
1402          * @param uijvij U and V coefficients
1403          * @param n Keplerian mean motion
1404          * @param a semi major axis
1405          * @throws OrekitException if an error occurs
1406          */
1407         private void computeCoefficients(final SpacecraftState state, final Slot slot,
1408                                          final FourierCjSjCoefficients fourierCjSj,
1409                                          final UijVijCoefficients uijvij,
1410                                          final double n, final double a)
1411             throws OrekitException {
1412 
1413             // get the current date
1414             final AbsoluteDate date = state.getDate();
1415 
1416             // compute the k₂⁰ coefficient
1417             final double k20 = computeK20(jMax, uijvij.currentRhoSigmaj);
1418 
1419             // 1. / n
1420             final double oon = 1. / n;
1421             // 3. / (2 * a * n)
1422             final double to2an = 1.5 * oon / a;
1423             // 3. / (4 * a * n)
1424             final double to4an = to2an / 2;
1425 
1426             // Compute the coefficients for each element
1427             final int size = jMax + 1;
1428             final double[]   di1        = new double[6];
1429             final double[]   di2        = new double[6];
1430             final double[][] currentCij = new double[size][6];
1431             final double[][] currentSij = new double[size][6];
1432             for (int i = 0; i < 6; i++) {
1433 
1434                 // compute D<sub>i</sub>¹ and D<sub>i</sub>² (all others are 0)
1435                 di1[i] = -oon * fourierCjSj.getCij(i, 0);
1436                 if (i == 5) {
1437                     di1[i] += to2an * uijvij.getU1(0, 0);
1438                 }
1439                 di2[i] = 0.;
1440                 if (i == 5) {
1441                     di2[i] += -to4an * fourierCjSj.getCij(0, 0);
1442                 }
1443 
1444                 //the C<sub>i</sub>⁰ is computed based on all others
1445                 currentCij[0][i] = -di2[i] * k20;
1446 
1447                 for (int j = 1; j <= jMax; j++) {
1448                     // compute the current C<sub>i</sub><sup>j</sup> and S<sub>i</sub><sup>j</sup>
1449                     currentCij[j][i] = oon * uijvij.getU1(j, i);
1450                     if (i == 5) {
1451                         currentCij[j][i] += -to2an * uijvij.getU2(j);
1452                     }
1453                     currentSij[j][i] = oon * uijvij.getV1(j, i);
1454                     if (i == 5) {
1455                         currentSij[j][i] += -to2an * uijvij.getV2(j);
1456                     }
1457 
1458                     // add the computed coefficients to C<sub>i</sub>⁰
1459                     currentCij[0][i] += -(currentCij[j][i] * uijvij.currentRhoSigmaj[0][j] + currentSij[j][i] * uijvij.currentRhoSigmaj[1][j]);
1460                 }
1461 
1462             }
1463 
1464             // add the values to the interpolators
1465             slot.cij[0].addGridPoint(date, currentCij[0]);
1466             slot.dij[1].addGridPoint(date, di1);
1467             slot.dij[2].addGridPoint(date, di2);
1468             for (int j = 1; j <= jMax; j++) {
1469                 slot.cij[j].addGridPoint(date, currentCij[j]);
1470                 slot.sij[j].addGridPoint(date, currentSij[j]);
1471             }
1472 
1473         }
1474 
1475         /** Compute the coefficient k₂⁰ by using the equation
1476          * 2.5.3-(9a) from Danielson.
1477          * <p>
1478          * After inserting 2.5.3-(8) into 2.5.3-(9a) the result becomes:<br>
1479          * k₂⁰ = &Sigma;<sub>k=1</sub><sup>kMax</sup>[(2 / k²) * (σ<sub>k</sub>² + ρ<sub>k</sub>²)]
1480          * </p>
1481          * @param kMax max value fot k index
1482          * @param currentRhoSigmaj the current computed values for the ρ<sub>j</sub> and σ<sub>j</sub> coefficients
1483          * @return the coefficient k₂⁰
1484          */
1485         private double computeK20(final int kMax, final double[][] currentRhoSigmaj) {
1486             double k20 = 0.;
1487 
1488             for (int kIndex = 1; kIndex <= kMax; kIndex++) {
1489                 // After inserting 2.5.3-(8) into 2.5.3-(9a) the result becomes:
1490                 //k₂⁰ = &Sigma;<sub>k=1</sub><sup>kMax</sup>[(2 / k²) * (σ<sub>k</sub>² + ρ<sub>k</sub>²)]
1491                 double currentTerm = currentRhoSigmaj[1][kIndex] * currentRhoSigmaj[1][kIndex] +
1492                                      currentRhoSigmaj[0][kIndex] * currentRhoSigmaj[0][kIndex];
1493 
1494                 //multiply by 2 / k²
1495                 currentTerm *= 2. / (kIndex * kIndex);
1496 
1497                 // add the term to the result
1498                 k20 += currentTerm;
1499             }
1500 
1501             return k20;
1502         }
1503 
1504         /** {@inheritDoc} */
1505         @Override
1506         public double[] value(final Orbit meanOrbit) {
1507 
1508             // select the coefficients slot
1509             final Slot slot = slots.get(meanOrbit.getDate());
1510 
1511             // Get the True longitude L
1512             final double L = meanOrbit.getLv();
1513 
1514             // Compute the center (l - λ)
1515             final double center =  L - meanOrbit.getLM();
1516             // Compute (l - λ)²
1517             final double center2 = center * center;
1518 
1519             // Initialize short periodic variations
1520             final double[] shortPeriodicVariation = slot.cij[0].value(meanOrbit.getDate());
1521             final double[] d1 = slot.dij[1].value(meanOrbit.getDate());
1522             final double[] d2 = slot.dij[2].value(meanOrbit.getDate());
1523             for (int i = 0; i < 6; i++) {
1524                 shortPeriodicVariation[i] += center * d1[i] + center2 * d2[i];
1525             }
1526 
1527             for (int j = 1; j <= JMAX; j++) {
1528                 final double[] c = slot.cij[j].value(meanOrbit.getDate());
1529                 final double[] s = slot.sij[j].value(meanOrbit.getDate());
1530                 final double cos = FastMath.cos(j * L);
1531                 final double sin = FastMath.sin(j * L);
1532                 for (int i = 0; i < 6; i++) {
1533                     // add corresponding term to the short periodic variation
1534                     shortPeriodicVariation[i] += c[i] * cos;
1535                     shortPeriodicVariation[i] += s[i] * sin;
1536                 }
1537             }
1538 
1539             return shortPeriodicVariation;
1540 
1541         }
1542 
1543         /** {@inheritDoc} */
1544         public String getCoefficientsKeyPrefix() {
1545             return coefficientsKeyPrefix;
1546         }
1547 
1548         /** {@inheritDoc}
1549          * <p>
1550          * For Gaussian forces,there are JMAX cj coefficients,
1551          * JMAX sj coefficients and 3 dj coefficients. As JMAX = 12,
1552          * this sums up to 27 coefficients. The j index is the integer
1553          * multiplier for the true longitude argument in the cj and sj
1554          * coefficients and to the degree in  the polynomial dj coefficients.
1555          * </p>
1556          */
1557         @Override
1558         public Map<String, double[]> getCoefficients(final AbsoluteDate date, final Set<String> selected)
1559             throws OrekitException {
1560 
1561             // select the coefficients slot
1562             final Slot slot = slots.get(date);
1563 
1564             final Map<String, double[]> coefficients = new HashMap<String, double[]>(2 * JMAX + 3);
1565             storeIfSelected(coefficients, selected, slot.cij[0].value(date), "d", 0);
1566             storeIfSelected(coefficients, selected, slot.dij[1].value(date), "d", 1);
1567             storeIfSelected(coefficients, selected, slot.dij[2].value(date), "d", 2);
1568             for (int j = 1; j <= JMAX; j++) {
1569                 storeIfSelected(coefficients, selected, slot.cij[j].value(date), "c", j);
1570                 storeIfSelected(coefficients, selected, slot.sij[j].value(date), "s", j);
1571             }
1572 
1573             return coefficients;
1574 
1575         }
1576 
1577         /** Put a coefficient in a map if selected.
1578          * @param map map to populate
1579          * @param selected set of coefficients that should be put in the map
1580          * (empty set means all coefficients are selected)
1581          * @param value coefficient value
1582          * @param id coefficient identifier
1583          * @param indices list of coefficient indices
1584          */
1585         private void storeIfSelected(final Map<String, double[]> map, final Set<String> selected,
1586                                      final double[] value, final String id, final int ... indices) {
1587             final StringBuilder keyBuilder = new StringBuilder(getCoefficientsKeyPrefix());
1588             keyBuilder.append(id);
1589             for (int index : indices) {
1590                 keyBuilder.append('[').append(index).append(']');
1591             }
1592             final String key = keyBuilder.toString();
1593             if (selected.isEmpty() || selected.contains(key)) {
1594                 map.put(key, value);
1595             }
1596         }
1597 
1598         /** Replace the instance with a data transfer object for serialization.
1599          * @return data transfer object that will be serialized
1600          * @exception NotSerializableException if an additional state provider is not serializable
1601          */
1602         private Object writeReplace() throws NotSerializableException {
1603 
1604             // slots transitions
1605             final SortedSet<TimeSpanMap.Transition<Slot>> transitions     = slots.getTransitions();
1606             final AbsoluteDate[]                          transitionDates = new AbsoluteDate[transitions.size()];
1607             final Slot[]                                  allSlots        = new Slot[transitions.size() + 1];
1608             int i = 0;
1609             for (final TimeSpanMap.Transition<Slot> transition : transitions) {
1610                 if (i == 0) {
1611                     // slot before the first transition
1612                     allSlots[i] = transition.getBefore();
1613                 }
1614                 if (i < transitionDates.length) {
1615                     transitionDates[i] = transition.getDate();
1616                     allSlots[++i]      = transition.getAfter();
1617                 }
1618             }
1619 
1620             return new DataTransferObject(jMax, interpolationPoints, coefficientsKeyPrefix,
1621                                           transitionDates, allSlots);
1622 
1623         }
1624 
1625 
1626         /** Internal class used only for serialization. */
1627         private static class DataTransferObject implements Serializable {
1628 
1629             /** Serializable UID. */
1630             private static final long serialVersionUID = 20160319L;
1631 
1632             /** Maximum value for j index. */
1633             private final int jMax;
1634 
1635             /** Number of points used in the interpolation process. */
1636             private final int interpolationPoints;
1637 
1638             /** Prefix for coefficients keys. */
1639             private final String coefficientsKeyPrefix;
1640 
1641             /** Transitions dates. */
1642             private final AbsoluteDate[] transitionDates;
1643 
1644             /** All slots. */
1645             private final Slot[] allSlots;
1646 
1647             /** Simple constructor.
1648              * @param jMax maximum value for j index
1649              * @param interpolationPoints number of points used in the interpolation process
1650              * @param coefficientsKeyPrefix prefix for coefficients keys
1651              * @param transitionDates transitions dates
1652              * @param allSlots all slots
1653              */
1654             DataTransferObject(final int jMax, final int interpolationPoints,
1655                                final String coefficientsKeyPrefix,
1656                                final AbsoluteDate[] transitionDates, final Slot[] allSlots) {
1657                 this.jMax                  = jMax;
1658                 this.interpolationPoints   = interpolationPoints;
1659                 this.coefficientsKeyPrefix = coefficientsKeyPrefix;
1660                 this.transitionDates       = transitionDates;
1661                 this.allSlots              = allSlots;
1662             }
1663 
1664             /** Replace the deserialized data transfer object with a {@link GaussianShortPeriodicCoefficients}.
1665              * @return replacement {@link GaussianShortPeriodicCoefficients}
1666              */
1667             private Object readResolve() {
1668 
1669                 final TimeSpanMap<Slot> slots = new TimeSpanMap<Slot>(allSlots[0]);
1670                 for (int i = 0; i < transitionDates.length; ++i) {
1671                     slots.addValidAfter(allSlots[i + 1], transitionDates[i]);
1672                 }
1673 
1674                 return new GaussianShortPeriodicCoefficients(coefficientsKeyPrefix, jMax, interpolationPoints, slots);
1675 
1676             }
1677 
1678         }
1679 
1680     }
1681 
1682     /** The U<sub>i</sub><sup>j</sup> and V<sub>i</sub><sup>j</sup> coefficients described by
1683      * equations 2.5.3-(21) and 2.5.3-(22) from Danielson.
1684      * <p>
1685      * The index i takes only the values 1 and 2<br>
1686      * For U only the index 0 for j is used.
1687      * </p>
1688      *
1689      * @author Petre Bazavan
1690      * @author Lucian Barbulescu
1691      */
1692     private static class UijVijCoefficients {
1693 
1694         /** The U₁<sup>j</sup> coefficients.
1695          * <p>
1696          * The first index identifies the Fourier coefficients used<br>
1697          * Those coefficients are computed for all Fourier C<sub>i</sub><sup>j</sup> and S<sub>i</sub><sup>j</sup><br>
1698          * The only exception is when j = 0 when only the coefficient for fourier index = 1 (i == 0) is needed.<br>
1699          * Also, for fourier index = 1 (i == 0), the coefficients up to 2 * jMax are computed, because are required
1700          * to compute the coefficients U₂<sup>j</sup>
1701          * </p>
1702          */
1703         private final double[][] u1ij;
1704 
1705         /** The V₁<sup>j</sup> coefficients.
1706          * <p>
1707          * The first index identifies the Fourier coefficients used<br>
1708          * Those coefficients are computed for all Fourier C<sub>i</sub><sup>j</sup> and S<sub>i</sub><sup>j</sup><br>
1709          * for fourier index = 1 (i == 0), the coefficients up to 2 * jMax are computed, because are required
1710          * to compute the coefficients V₂<sup>j</sup>
1711          * </p>
1712          */
1713         private final double[][] v1ij;
1714 
1715         /** The U₂<sup>j</sup> coefficients.
1716          * <p>
1717          * Only the coefficients that use the Fourier index = 1 (i == 0) are computed as they are the only ones required.
1718          * </p>
1719          */
1720         private final double[] u2ij;
1721 
1722         /** The V₂<sup>j</sup> coefficients.
1723          * <p>
1724          * Only the coefficients that use the Fourier index = 1 (i == 0) are computed as they are the only ones required.
1725          * </p>
1726          */
1727         private final double[] v2ij;
1728 
1729         /** The current computed values for the ρ<sub>j</sub> and σ<sub>j</sub> coefficients. */
1730         private final double[][] currentRhoSigmaj;
1731 
1732         /** The C<sub>i</sub><sup>j</sup> and the S<sub>i</sub><sup>j</sup> Fourier coefficients. */
1733         private final FourierCjSjCoefficients fourierCjSj;
1734 
1735         /** The maximum value for j index. */
1736         private final int jMax;
1737 
1738         /** Constructor.
1739          * @param currentRhoSigmaj the current computed values for the ρ<sub>j</sub> and σ<sub>j</sub> coefficients
1740          * @param fourierCjSj the fourier coefficients C<sub>i</sub><sup>j</sup> and the S<sub>i</sub><sup>j</sup>
1741          * @param jMax maximum value for j index
1742          */
1743         UijVijCoefficients(final double[][] currentRhoSigmaj, final FourierCjSjCoefficients fourierCjSj, final int jMax) {
1744             this.currentRhoSigmaj = currentRhoSigmaj;
1745             this.fourierCjSj = fourierCjSj;
1746             this.jMax = jMax;
1747 
1748             // initialize the internal arrays.
1749             this.u1ij = new double[6][2 * jMax + 1];
1750             this.v1ij = new double[6][2 * jMax + 1];
1751             this.u2ij = new double[jMax + 1];
1752             this.v2ij = new double[jMax + 1];
1753 
1754             //compute the coefficients
1755             computeU1V1Coefficients();
1756             computeU2V2Coefficients();
1757         }
1758 
1759         /** Build the U₁<sup>j</sup> and V₁<sup>j</sup> coefficients. */
1760         private void computeU1V1Coefficients() {
1761             // generate the U₁<sup>j</sup> and V₁<sup>j</sup> coefficients
1762             // for j >= 1
1763             // also the U₁⁰ for Fourier index = 1 (i == 0) coefficient will be computed
1764             u1ij[0][0] = 0;
1765             for (int j = 1; j <= jMax; j++) {
1766                 // compute 1 / j
1767                 final double ooj = 1. / j;
1768 
1769                 for (int i = 0; i < 6; i++) {
1770                     //j is aready between 1 and J
1771                     u1ij[i][j] = fourierCjSj.getSij(i, j);
1772                     v1ij[i][j] = fourierCjSj.getCij(i, j);
1773 
1774                     // 1 - δ<sub>1j</sub> is 1 for all j > 1
1775                     if (j > 1) {
1776                         // k starts with 1 because j-J is less than or equal to 0
1777                         for (int kIndex = 1; kIndex <= j - 1; kIndex++) {
1778                             // C<sub>i</sub><sup>j-k</sup> * σ<sub>k</sub> +
1779                             // S<sub>i</sub><sup>j-k</sup> * ρ<sub>k</sub>
1780                             u1ij[i][j] +=   fourierCjSj.getCij(i, j - kIndex) * currentRhoSigmaj[1][kIndex] +
1781                                             fourierCjSj.getSij(i, j - kIndex) * currentRhoSigmaj[0][kIndex];
1782 
1783                             // C<sub>i</sub><sup>j-k</sup> * ρ<sub>k</sub> -
1784                             // S<sub>i</sub><sup>j-k</sup> * σ<sub>k</sub>
1785                             v1ij[i][j] +=   fourierCjSj.getCij(i, j - kIndex) * currentRhoSigmaj[0][kIndex] -
1786                                             fourierCjSj.getSij(i, j - kIndex) * currentRhoSigmaj[1][kIndex];
1787                         }
1788                     }
1789 
1790                     // since j must be between 1 and J-1 and is already between 1 and J
1791                     // the following sum is skiped only for j = jMax
1792                     if (j != jMax) {
1793                         for (int kIndex = 1; kIndex <= jMax - j; kIndex++) {
1794                             // -C<sub>i</sub><sup>j+k</sup> * σ<sub>k</sub> +
1795                             // S<sub>i</sub><sup>j+k</sup> * ρ<sub>k</sub>
1796                             u1ij[i][j] +=   -fourierCjSj.getCij(i, j + kIndex) * currentRhoSigmaj[1][kIndex] +
1797                                             fourierCjSj.getSij(i, j + kIndex) * currentRhoSigmaj[0][kIndex];
1798 
1799                             // C<sub>i</sub><sup>j+k</sup> * ρ<sub>k</sub> +
1800                             // S<sub>i</sub><sup>j+k</sup> * σ<sub>k</sub>
1801                             v1ij[i][j] +=   fourierCjSj.getCij(i, j + kIndex) * currentRhoSigmaj[0][kIndex] +
1802                                             fourierCjSj.getSij(i, j + kIndex) * currentRhoSigmaj[1][kIndex];
1803                         }
1804                     }
1805 
1806                     for (int kIndex = 1; kIndex <= jMax; kIndex++) {
1807                         // C<sub>i</sub><sup>k</sup> * σ<sub>j+k</sub> -
1808                         // S<sub>i</sub><sup>k</sup> * ρ<sub>j+k</sub>
1809                         u1ij[i][j] +=   -fourierCjSj.getCij(i, kIndex) * currentRhoSigmaj[1][j + kIndex] -
1810                                         fourierCjSj.getSij(i, kIndex) * currentRhoSigmaj[0][j + kIndex];
1811 
1812                         // C<sub>i</sub><sup>k</sup> * ρ<sub>j+k</sub> +
1813                         // S<sub>i</sub><sup>k</sup> * σ<sub>j+k</sub>
1814                         v1ij[i][j] +=   fourierCjSj.getCij(i, kIndex) * currentRhoSigmaj[0][j + kIndex] +
1815                                         fourierCjSj.getSij(i, kIndex) * currentRhoSigmaj[1][j + kIndex];
1816                     }
1817 
1818                     // divide by 1 / j
1819                     u1ij[i][j] *= -ooj;
1820                     v1ij[i][j] *= ooj;
1821 
1822                     // if index = 1 (i == 0) add the computed terms to U₁⁰
1823                     if (i == 0) {
1824                         //- (U₁<sup>j</sup> * ρ<sub>j</sub> + V₁<sup>j</sup> * σ<sub>j</sub>
1825                         u1ij[0][0] += -u1ij[0][j] * currentRhoSigmaj[0][j] - v1ij[0][j] * currentRhoSigmaj[1][j];
1826                     }
1827                 }
1828             }
1829 
1830             // Terms with j > jMax are required only when computing the coefficients
1831             // U₂<sup>j</sup> and V₂<sup>j</sup>
1832             // and those coefficients are only required for Fourier index = 1 (i == 0).
1833             for (int j = jMax + 1; j <= 2 * jMax; j++) {
1834                 // compute 1 / j
1835                 final double ooj = 1. / j;
1836                 //the value of i is 0
1837                 u1ij[0][j] = 0.;
1838                 v1ij[0][j] = 0.;
1839 
1840                 //k starts from j-J as it is always greater than or equal to 1
1841                 for (int kIndex = j - jMax; kIndex <= j - 1; kIndex++) {
1842                     // C<sub>i</sub><sup>j-k</sup> * σ<sub>k</sub> +
1843                     // S<sub>i</sub><sup>j-k</sup> * ρ<sub>k</sub>
1844                     u1ij[0][j] +=   fourierCjSj.getCij(0, j - kIndex) * currentRhoSigmaj[1][kIndex] +
1845                                     fourierCjSj.getSij(0, j - kIndex) * currentRhoSigmaj[0][kIndex];
1846 
1847                     // C<sub>i</sub><sup>j-k</sup> * ρ<sub>k</sub> -
1848                     // S<sub>i</sub><sup>j-k</sup> * σ<sub>k</sub>
1849                     v1ij[0][j] +=   fourierCjSj.getCij(0, j - kIndex) * currentRhoSigmaj[0][kIndex] -
1850                                     fourierCjSj.getSij(0, j - kIndex) * currentRhoSigmaj[1][kIndex];
1851                 }
1852                 for (int kIndex = 1; kIndex <= jMax; kIndex++) {
1853                     // C<sub>i</sub><sup>k</sup> * σ<sub>j+k</sub> -
1854                     // S<sub>i</sub><sup>k</sup> * ρ<sub>j+k</sub>
1855                     u1ij[0][j] +=   -fourierCjSj.getCij(0, kIndex) * currentRhoSigmaj[1][j + kIndex] -
1856                                     fourierCjSj.getSij(0, kIndex) * currentRhoSigmaj[0][j + kIndex];
1857 
1858                     // C<sub>i</sub><sup>k</sup> * ρ<sub>j+k</sub> +
1859                     // S<sub>i</sub><sup>k</sup> * σ<sub>j+k</sub>
1860                     v1ij[0][j] +=   fourierCjSj.getCij(0, kIndex) * currentRhoSigmaj[0][j + kIndex] +
1861                                     fourierCjSj.getSij(0, kIndex) * currentRhoSigmaj[1][j + kIndex];
1862                 }
1863 
1864                 // divide by 1 / j
1865                 u1ij[0][j] *= -ooj;
1866                 v1ij[0][j] *= ooj;
1867             }
1868         }
1869 
1870         /** Build the U₁<sup>j</sup> and V₁<sup>j</sup> coefficients.
1871          * <p>
1872          * Only the coefficients for Fourier index = 1 (i == 0) are required.
1873          * </p>
1874          */
1875         private void computeU2V2Coefficients() {
1876             for (int j = 1; j <= jMax; j++) {
1877                 // compute 1 / j
1878                 final double ooj = 1. / j;
1879 
1880                 // only the values for i == 0 are computed
1881                 u2ij[j] = v1ij[0][j];
1882                 v2ij[j] = u1ij[0][j];
1883 
1884                 // 1 - δ<sub>1j</sub> is 1 for all j > 1
1885                 if (j > 1) {
1886                     for (int l = 1; l <= j - 1; l++) {
1887                         // U₁<sup>j-l</sup> * σ<sub>l</sub> +
1888                         // V₁<sup>j-l</sup> * ρ<sub>l</sub>
1889                         u2ij[j] +=   u1ij[0][j - l] * currentRhoSigmaj[1][l] +
1890                                      v1ij[0][j - l] * currentRhoSigmaj[0][l];
1891 
1892                         // U₁<sup>j-l</sup> * ρ<sub>l</sub> -
1893                         // V₁<sup>j-l</sup> * σ<sub>l</sub>
1894                         v2ij[j] +=   u1ij[0][j - l] * currentRhoSigmaj[0][l] -
1895                                      v1ij[0][j - l] * currentRhoSigmaj[1][l];
1896                     }
1897                 }
1898 
1899                 for (int l = 1; l <= jMax; l++) {
1900                     // -U₁<sup>j+l</sup> * σ<sub>l</sub> +
1901                     // U₁<sup>l</sup> * σ<sub>j+l</sub> +
1902                     // V₁<sup>j+l</sup> * ρ<sub>l</sub> -
1903                     // V₁<sup>l</sup> * ρ<sub>j+l</sub>
1904                     u2ij[j] +=   -u1ij[0][j + l] * currentRhoSigmaj[1][l] +
1905                                   u1ij[0][l] * currentRhoSigmaj[1][j + l] +
1906                                   v1ij[0][j + l] * currentRhoSigmaj[0][l] -
1907                                   v1ij[0][l] * currentRhoSigmaj[0][j + l];
1908 
1909                     // U₁<sup>j+l</sup> * ρ<sub>l</sub> +
1910                     // U₁<sup>l</sup> * ρ<sub>j+l</sub> +
1911                     // V₁<sup>j+l</sup> * σ<sub>l</sub> +
1912                     // V₁<sup>l</sup> * σ<sub>j+l</sub>
1913                     u2ij[j] +=   u1ij[0][j + l] * currentRhoSigmaj[0][l] +
1914                                  u1ij[0][l] * currentRhoSigmaj[0][j + l] +
1915                                  v1ij[0][j + l] * currentRhoSigmaj[1][l] +
1916                                  v1ij[0][l] * currentRhoSigmaj[1][j + l];
1917                 }
1918 
1919                 // divide by 1 / j
1920                 u2ij[j] *= -ooj;
1921                 v2ij[j] *= ooj;
1922             }
1923         }
1924 
1925         /** Get the coefficient U₁<sup>j</sup> for Fourier index i.
1926          *
1927          * @param j j index
1928          * @param i Fourier index (starts at 0)
1929          * @return the coefficient U₁<sup>j</sup> for the given Fourier index i
1930          */
1931         public double getU1(final int j, final int i) {
1932             return u1ij[i][j];
1933         }
1934 
1935         /** Get the coefficient V₁<sup>j</sup> for Fourier index i.
1936          *
1937          * @param j j index
1938          * @param i Fourier index (starts at 0)
1939          * @return the coefficient V₁<sup>j</sup> for the given Fourier index i
1940          */
1941         public double getV1(final int j, final int i) {
1942             return v1ij[i][j];
1943         }
1944 
1945         /** Get the coefficient U₂<sup>j</sup> for Fourier index = 1 (i == 0).
1946          *
1947          * @param j j index
1948          * @return the coefficient U₂<sup>j</sup> for Fourier index = 1 (i == 0)
1949          */
1950         public double getU2(final int j) {
1951             return u2ij[j];
1952         }
1953 
1954         /** Get the coefficient V₂<sup>j</sup> for Fourier index = 1 (i == 0).
1955          *
1956          * @param j j index
1957          * @return the coefficient V₂<sup>j</sup> for Fourier index = 1 (i == 0)
1958          */
1959         public double getV2(final int j) {
1960             return v2ij[j];
1961         }
1962     }
1963 
1964     /** Coefficients valid for one time slot. */
1965     private static class Slot implements Serializable {
1966 
1967         /** Serializable UID. */
1968         private static final long serialVersionUID = 20160319L;
1969 
1970         /**The coefficients D<sub>i</sub><sup>j</sup>.
1971          * <p>
1972          * Only for j = 1 and j = 2 the coefficients are not 0. <br>
1973          * i corresponds to the equinoctial element, as follows:
1974          * - i=0 for a <br/>
1975          * - i=1 for k <br/>
1976          * - i=2 for h <br/>
1977          * - i=3 for q <br/>
1978          * - i=4 for p <br/>
1979          * - i=5 for λ <br/>
1980          * </p>
1981          */
1982         private final ShortPeriodicsInterpolatedCoefficient[] dij;
1983 
1984         /** The coefficients C<sub>i</sub><sup>j</sup>.
1985          * <p>
1986          * The index order is cij[j][i] <br/>
1987          * i corresponds to the equinoctial element, as follows: <br/>
1988          * - i=0 for a <br/>
1989          * - i=1 for k <br/>
1990          * - i=2 for h <br/>
1991          * - i=3 for q <br/>
1992          * - i=4 for p <br/>
1993          * - i=5 for λ <br/>
1994          * </p>
1995          */
1996         private final ShortPeriodicsInterpolatedCoefficient[] cij;
1997 
1998         /** The coefficients S<sub>i</sub><sup>j</sup>.
1999          * <p>
2000          * The index order is sij[j][i] <br/>
2001          * i corresponds to the equinoctial element, as follows: <br/>
2002          * - i=0 for a <br/>
2003          * - i=1 for k <br/>
2004          * - i=2 for h <br/>
2005          * - i=3 for q <br/>
2006          * - i=4 for p <br/>
2007          * - i=5 for λ <br/>
2008          * </p>
2009          */
2010         private final ShortPeriodicsInterpolatedCoefficient[] sij;
2011 
2012         /** Simple constructor.
2013          *  @param jMax maximum value for j index
2014          *  @param interpolationPoints number of points used in the interpolation process
2015          */
2016         Slot(final int jMax, final int interpolationPoints) {
2017 
2018             dij = new ShortPeriodicsInterpolatedCoefficient[3];
2019             cij = new ShortPeriodicsInterpolatedCoefficient[jMax + 1];
2020             sij = new ShortPeriodicsInterpolatedCoefficient[jMax + 1];
2021 
2022             // Initialize the C<sub>i</sub><sup>j</sup>, S<sub>i</sub><sup>j</sup> and D<sub>i</sub><sup>j</sup> coefficients
2023             for (int j = 0; j <= jMax; j++) {
2024                 cij[j] = new ShortPeriodicsInterpolatedCoefficient(interpolationPoints);
2025                 if (j > 0) {
2026                     sij[j] = new ShortPeriodicsInterpolatedCoefficient(interpolationPoints);
2027                 }
2028                 // Initialize only the non-zero D<sub>i</sub><sup>j</sup> coefficients
2029                 if (j == 1 || j == 2) {
2030                     dij[j] = new ShortPeriodicsInterpolatedCoefficient(interpolationPoints);
2031                 }
2032             }
2033 
2034         }
2035 
2036     }
2037 
2038 }